聚合物基復合材料模壓成型過程固化度與溫度的動態變化為強耦合關系。本文作者根據固化動力學和傳熱學理論,建立了非穩態溫度場與固化動力學數學模型。通過DSC實驗分析確定模型中固化動力學參數。利用有限單元與有限差分相結合的方法,建立了溫度場和固化度數值模型。應用Euler逐步迭代法實現解耦。對聚合物基復合材料模壓成型過程固化度與非穩態溫度場動態變化進行計算機數值模擬,與試驗測定結果吻合。為優化模壓成型工藝提供理論依據。
聚合物基復合材料模壓制品是經高溫高壓固化成型的。現在工業生產模壓工藝參數是據試驗或經驗制定的。試驗周期長,耗資費力,或科學性不足。優化模壓工藝(如模壓溫度、時間)對提高產品質量和生產率,降低能耗是至關重要的。對聚合物基復合材料模壓制品的固化過程進行數值模擬,預測其動態變化,可為優化模壓工藝提供理論依據,且經濟快捷有效。但是,由于固化動力學方程中含有溫度變量,求固化度時要求溫度己知:而熱傳導方程中內熱源(固化反應放熱)又是固化度的函數,求溫度時又要求固化度己知。因此,聚合物基體在模壓過程中固化度與溫度間是一種強耦合關系。使求解變得復雜和困難。本文作者根據固化動力學和熱傳導理論,建立了非穩態溫度場和固化動力學數學模型。通過DSC試驗分析確定了模型中的固化動力學參數。利用有限單元與有限差分相結合的方法,建立了溫度場和固化度數值模型。應用Euler逐步迭代法實現解耦"1。在此基礎上編制了計算機程序,對聚合物基復合材料SM C(Sheet Molding Compound)模壓過程溫度場與固化度動態變化進行數值模擬,與試驗測定結果是吻合的。
資料下載:
聚合物基復合材料模壓成型過程固化度與非穩態溫度場的數值模擬_謝懷勤.pdf
聚合物基復合材料模壓制品是經高溫高壓固化成型的。現在工業生產模壓工藝參數是據試驗或經驗制定的。試驗周期長,耗資費力,或科學性不足。優化模壓工藝(如模壓溫度、時間)對提高產品質量和生產率,降低能耗是至關重要的。對聚合物基復合材料模壓制品的固化過程進行數值模擬,預測其動態變化,可為優化模壓工藝提供理論依據,且經濟快捷有效。但是,由于固化動力學方程中含有溫度變量,求固化度時要求溫度己知:而熱傳導方程中內熱源(固化反應放熱)又是固化度的函數,求溫度時又要求固化度己知。因此,聚合物基體在模壓過程中固化度與溫度間是一種強耦合關系。使求解變得復雜和困難。本文作者根據固化動力學和熱傳導理論,建立了非穩態溫度場和固化動力學數學模型。通過DSC試驗分析確定了模型中的固化動力學參數。利用有限單元與有限差分相結合的方法,建立了溫度場和固化度數值模型。應用Euler逐步迭代法實現解耦"1。在此基礎上編制了計算機程序,對聚合物基復合材料SM C(Sheet Molding Compound)模壓過程溫度場與固化度動態變化進行數值模擬,與試驗測定結果是吻合的。
資料下載:
